7 समाकलन | प्रश्नावली 7.1 | NCERT Maths Class 12 Chapter 7 Exercise 7.1 all questions UP Board Hindi Medium

7 समाकलन | प्रश्नावली 7.1 | NCERT Maths Class 12 Chapter 7 Exercise 7.1 all questions UP Board Hindi Medium

7 समाकलन (Integrals) प्रश्नावली (7.1) NCERT Math Class 12th SOLVED By : AJAY SIR  (1/9/2025)

1. $sin2x$

हल :-

$∫sin2x dx= ?$
$d/{dx} cos2x = - sin2x .2$
${-1}/2 d/{dx} cos2x = sin2x$
$d/{dx} ({-1}/2 cos2x )= sin2x$
$∫sin2x dx={-1}/2 cos2x$ Ans.

2. $cos3x$

हल :-


$∫cosx dx= ?$
$d/{dx} sin3x = cos3x .3$
$1/3 d/{dx} sin3x = cos3x$
$d/{dx} (1/3 sin3x)= cos3x$
$∫cos3x dx=1/3 sin3x $ Ans.
 

3. $e^{2x}$ 

हल :-



$∫e^{2x} dx= ?$
$d/{dx} e^{2x}= e^{2x}.2$
$1/2 d/{dx} e^{2x}=e^{2x}$
$d/{dx} ({1/2} e^{2x})=e^{2x}$
$∫e^{2x} dx=1/2 e^{2x}$ Ans.

4. ${(ax+b)}^2$

हल :-

$∫{(ax+b)}^2 dx= ?$
$d/{dx} {(ax+b)}^3= {(ax+b)}^2 . d/{dx} (ax+b)$
$d/{dx} {(ax+b)}^3= 3{(ax+b)}^2 .a$
$1/{3a} d/{dx} {(ax+b)}^3={(ax+b)}^2$
$d/{dx} [1/{3a} {(ax+b)}^3]= cos3x$
$∫{(ax+b)}^2 dx=1/{3a} {(ax+b)}^3$ Ans.

5. $sin2x-4e^{3x}$

हल :-



$∫(sin2x-4e^{3x}) dx= ?$
∵ $∫(sin2x-4e^{3x}) dx= ∫sin2x dx- 4∫e^{3x} dx$
$⇒ d/{dx} cos2x = - sin2x .2$
${-1}/2 d/{dx} cos2x = sin2x$
$d/{dx} ({-1}/2 cos2x )= sin2x$
$∫sin2x dx={-1}/2 cos2x (1)$
$⇒d/{dx} e^{3x} = e^{3x}.3$
$1/2 d/{dx} e^{3x}=e^{3x}$
$d/{dx} (1/3 e^{3x})=e^{3x}$
$∫e^{3x} dx=1/3 e^{3x}$ Ans.
∴ $∫(sin2x-4e^{3x}) dx=-1/2 cos2x - 4× 1/3 e^{3x}$
 $∫(sin2x-4e^{3x}) dx={-1}/2 cos2x- 4/3 e^{3x}$ Ans.

6. $sin2x-4e^{3x}$

हल :-


$∫(4e^{3x}+1) dx = ∫4e^{3x} dx - ∫1dx$
$=4 ∫e^{3x} dx - ∫1dx$
$= 4 .e^{3x}/3 - x+C$
$=4/3 e^{3x} - x+C $
 Ans.

7. $x^2 (1-1/{x^2})$

हल :-


$∫{x^2 (1-1/{x^2})} dx = ∫(x^2- {x^2}/{x^2}) dx$
$=∫(x^2-1) dx$
$=∫x^2 dx- ∫1 dx$
$=x^{2+1}/{2+1} -x+C$
$={x^3}/3 - x+C $ Ans.

8. $ax^2+bx+C$

हल :-


 $ ∫(ax^2+bx+c) dx = a∫x^2 dx+ b ∫x dx +c ∫1 dx$
$= a. x^{2+1}/{2+1}+b. x^{1+1}/{1+1}+ cx+ C_1 $
$={ax^3}/3+{bx^2}/2+cx+C_1 $ Ans.

9. $2x^2+e^x$

हल :-


$∫(2x^2+e^x) dx = 2∫x^2 dx+ ∫e^x dx$
$= 2. {x^{2+1}}/{2+1} +e^x + C$
$=2/3 x^3+e^x +C$ Ans.

10. ${(√x-1/√x)}^2$

हल :-


$∫{(√x-1/√x)}^2 dx =∫{(x+ 1/x -2)} dx$
$= ∫x dx+ ∫1/x dx -2 ∫1 dx$
$={x^{1+1}}/{1+1} +logx-2x+C$
$={x^2}/2 + logx-2x+C $ Ans.
11




12



13



14



15



16




टिप्पणियाँ

Popular Posts

2 मात्रक मापन तथा त्रुटि विश्लेषण | नोट्स | Kumar Mittal Physics class 11th chapter 2 notes in Hindi